
c© 2013 IEEE, Reprinted with permission, Georgiou G. and Voigt K., Self-Organizing Maps with a Single Neuron,
Proceedings of International Joint Conference on Neural Networks, Dallas, Texas, USA, August 4-9, 2013, pp. 978–973.

Self-Organizing Maps with a Single Neuron

George M. Georgiou and Kerstin Voigt

Abstract—Self-organization is explored with a single complex-
valued quadratic neuron. The output is the complex plane. A
virtual grid is used to provide desired outputs for each input.
Experiments have shown that training is fast. A quadratic
neuron with the new training algorithm has been shown to have
clustering properties. Data that are in a cluster in the input space
tend to cluster on the complex plane. The speed of training and
operation allows for efficient high-dimensional data exploration
and for real-time critical applications.

I. INTRODUCTION

SELF-ORGANIZING maps have been extensively studied
and used in many applications. [1]–[3] In their basic form,

they consist of an array of neurons which could be arranged
as a rectangular grid. During training each neuron is presented
with each input vector X ∈ Rn in turn. There is a competitive
process during which a winner neuron c is found of which its
weight vector Mc ∈ Rn most closely matches X:

c = argmin
i

(‖X −Mi‖). (1)

The weights of the winner neuron c and those of the neurons
within a neighborhood Nc on the neuron grid are modified
according to this rule:

Mj(t+ 1) =

{
Mj(t) + α(t)[X(t)−Mj(t)] if j ∈ Nc(t)
Mj(t) if j /∈ Nc(t),

(2)
where t is the discrete time parameter, α is the learning rate,
a small real value which decreases with time, and Nc is a set
of neuron indices in the topological neighborhood around the
winning neuron with index c. The size of neighborhood Nc
decreases with time. After the learning process has iterated
through the input set of vectors many times, the neurons on
the grid are tuned to respond to different areas of the input
space. In the normal operation, an input X is presented to the
neurons on the grid and the winning neuron is identified as
the response. Vectors in close proximity in the input space will
either cause response from the same neuron or from a group of
neurons within close topological proximity to each other on the
grid. Thus, the two-dimensional grid provides a topologically
consistent map of the input space. Training usually takes many
iterations. The process is governed by many parameters, e.g
the initialization of weights, the schedule of decreasing of the
neighborhood Nc, the size of the grid of neurons, and the
decreasing learning rate α(t). For example, a simple 2-D map
from the input space to a 2-D grid of neurons required 70, 000
iterations.

George M. Georgiou and Kerstin Voigt are with the School of Computer
Science and Engineering, California State University, San Bernardino, CA
92407, USA (email: {georgiou, kvoigt}@csusb.edu).

Given the 2-D nature of complex numbers, complex-valued
neurons will be used in the introduced self-organizing map.
Complex-valued neural networks is an active area of research.
[4]–[10]

II. COMPLEX-VALUED NEURONS

It is desired that we have a 2-D output space so that
visualization of the data in the output space is possible.
Whereas two real neurons can be used to obtain the two
coordinates at the output, we chose to use a single complex
neuron. This choice is motivated by the applicability to both
real and complex data, and also, in the case of the quadratic
neuron (below), by our ability to use results related to the field
of values of the weight matrix. [11], [12] For example, if the
input vectors are normalized, the output is confined to the field
of values, which is useful a priori information.

A. The complex linear neuron

The complex linear neuron was introduced in [13] in the
context of the LMS (Least-Mean Square) algorithm. The input
is X ∈ Cn and the weight vector of the neuron is W ∈ Cn.
The output of the neuron is y = WTX , the superscript (·)T is
the matrix (vector) transpose and y ∈ C is a complex scalar.
The error is defined as εj = dj − yj , where dj ∈ C is the
desired valued for a given input vector Xj . The mean-square
error is

E =
1

2

n∑
j=1

εjεj . (3)

The gradient of the real function E with respect to W for an
input vector X , omitting the subscripts, is

∇WE = −εX. (4)

The overbar signifies complex conjugation. Hence, the online
learning rule that minimizes the mean-square error is the
following:

∆W = αεX. (5)

The small real value α is the learning rate. The training
of the neuron is done as in the real case: each input is
presented in turn, and the weight vector is adjusted according
to Equation (5).

B. The complex quadratic neuron

The real quadratic neuron has been briefly discussed [14].
For input vector X ∈ Cn, the scalar complex output y =
X∗AX , where A ∈ Cn×n, the weight matrix. The superscript
(·)∗ denotes the conjugate transpose. The output can be written

1



as a summation of the individual terms that involve the
components of X and A:

y =

n∑
j=1

n∑
k=1

xjxkajk. (6)

Using the same mean-square error as in Equation (3), the
gradient of the error E with respect to weight ajk is

∇ajkE = −εxjxk, (7)

or in vector format:

∇AE = −εXXT . (8)

The gradient descent learning rule that minimizes the mean-
square error is

∆A = αεXXT , (9)

where α, as always, is a small real value, the learning rate.
The quadratic neuron has certain properties that other com-

monly used neurons, e.g. ones with sigmoid transfer functions,
do not have. For example, the output can be scaled and rotated
by simply multiplying the weight matrix A by aeiθ, where a is
the scaling factor, a real scalar, and θ is the angle of rotation.
If the input vectors are normalized, translation of the output
y by a complex scalar z can be achieved by replacing A with
A+ zI:

X∗(A+ zI)X = X∗AX + zX∗X = y + z. (10)

These are desirable properties in cases where the neuron is
already trained and yet transformation of the output is needed.

C. Mapping properties of the quadratic neuron

To explore the mapping properties of the quadratic neuron,
a 2-dimensional data set arranged on a grid was generated. The
rectangular data grid has diagonal points (−1,−1) and (1, 1),
and a total of 21 × 21 = 441 data points were generated.
Each of the Figures 1, 2, 3 and 4, represents the output
of the quadratic neuron for same 2-dimensional data set.
In each case, the weight matrix A was randomly assigned
values. The figures show that the general structure of the
input data is preserved in the output. In the common case,
the neurons on the grid in the Kohonen self-organizing maps
are randomly initialized, the structure of the input data needs
to be discovered through training. The quadratic neuron starts
with the advantage of having inherent topological properties.

III. THE NEW SELF-ORGANIZING ALGORITHM

Instead of having a grid of neurons where each is tuned
to respond to an area of the input space, in the new self-
organizing map we only have a single complex neuron. This
neuron can be chosen to be either the linear one in Section II-A
or the quadratic one in Section II-B. The output is observed
on the complex plane which provides a continuum in 2-D
as opposed to the discrete grid of neurons in the usual self-
organizing maps. This map can be used for data exploration,
i.e. to visually gauge the structure of the input data which is
normally high dimensional and not amenable to visualization.

Fig. 1. The output of the grid data.

Fig. 2. The output of a grid data.

Since the activation functions of both neurons are continuous
functions of the input, proximity in the input space around a
small neighborhood of a point will be preserved in the output.
When the quadratic neuron is used, there is experimental
evidence that clusters of data in the input space are preserved
in the output space. This is the desired functionality of the
introduced new neural structure and algorithm.

We begin the description of this new algorithm by defining
a 2-D grid on the output space of the neuron, which is the
complex plane. The grid, unlike the usual self-organizing
maps, is devoid of neurons. An example of such grid appears
in Figure 5. The intersection points of the grid serve as desired
values. For a given input vector X , the output y is computed.
The desired output d to be used in the learning algorithm is
defined as the nearest intersection point of the grid lines. In
other words, the output snaps onto the nearest corner on the
grid. In practice, the snapping function snap can be defined
in terms of a rounding function round, which rounds to the
nearest integer and it can be found in many programming
languages, such as Python. For example if one chooses a grid
with grid lines spaced at a distance 0.1 in both directions, the

2



Fig. 3. The output of a grid data.

Fig. 4. The output of a grid data.

Fig. 5. The virtual grid on the output space.

snap function can be defined as follows:

d = snap(y)

=
round(10 <(y))

10
+ i

round(10 =(y))

10

= (
round(10 <(y))

10
,

round(10 =(y))

10
), (11)

where i =
√
−1, and the functions <, = return the real and

the imaginary parts of their argument, respectively. Since the
grid exists only implicitly through the snap function, it can be
called virtual grid. It can be limited to a specific rectangular,
or square area. In that case, if the output y falls outside the
grid, the corresponding value d will be a point on the boundary
of the grid.

After randomly initializing the weights of neuron, training
proceeds as follows:

1) Present input vector X to the neuron and compute the
output y.

2) Compute d = snap(y), the nearest intersection of grid
lines. This is the desired output for input X .

3) Update the weights of the neuron using Equation (5) or
(9), depending on which neuron is used.

In each iteration, the above steps are carried out for each of
the input vectors in the data set. The process is repeated for
a number of iterations. Label information of the data is not
used at any time. The learning rate could be decreasing with
time, as is the case with the Kohonen self-organizing maps,
or there could be a maximum number of iterations, or there
could be a given minimum mean-square error over all inputs
that, when reached, stops the process. Normally the choice
rests on experimentation and experience.

The basic mechanism by which clustering is achieved with
the new algorithm could be explained as follows. A cluster
in the input space will map to a similar region in the output
space due to the continuity of the activation function. Other
data vectors, not belonging to the cluster, may map to the
same region. Since the cluster data are more numerous, they
will cause the weights of the neuron to move so that their
outputs remain close together in the same region of the grid.
At the same time, the less numerous data will not have as
much influence on the weights and will move away from the
cluster in the output space.

IV. RESULTS

A. The Iris data set
Clustering tests were conducted on the well known iris data

set. There are 150 4-dimensional (real) data vectors, which
belong to three different classes. [15] In these experiments,
the quadratic neuron was used with virtual grid lines spaced
at 0.01. The grid onto which the output was allowed to snap
was limited to in the area of a square of size 2 centered at the
origin. A point outside the rectangle was snapping on a point
on the near boundary of the grid. For readability, grid lines
in the figures are spaced at a larger distance. Run 1 and Run
2 are representative of numerous runs, in which the general
tendency to clearly form the three clusters was observed.

For both runs, the real and imaginary parts of the entries in
the weight matrix were initialized with random values in the
interval [−0.01, 0.01]. The learning rate was set to α = 0.001.
The output for the data is color coded based on the class to
which it corresponds. For Run 1, the initial output is shown in
Figure 6 and after 10 iterations through the data set in Figure 7.
The corresponding figures for Run 2 are Figure 8 and 9.

3



Fig. 6. Run 1: The initial distribution of the iris data.

Fig. 7. Run 1: After 10 iterations the clusters are clearly formed.

B. An artificial data set

To further test the algorithm, a data set was generated in
R6 ⊂ C6 that had two classes. Each class had 50 points
(vectors). The classes were not overlapping, i.e. they were
linearly separable, and each was uniformly distributed in a
unit sphere. Of interest in this experiment was the effect of
the learning rate in the separation process of the two clusters
and also the convergence of the algorithm. Figure 10 shows
the initial distribution of points of two classes at the output
of the quadratic neuron. As it can be seen in the figure,
the two classes are initially thoroughly mixed together. The
new self-organizing algorithm was applied as described in the
three experiments below In each case, a different learning
rate α scheme was used. In these experiments, an infinite
virtual grid was used. In other words, the desired output was
simply the output of the snap(·) function; it was not limited
in a finite rectangular area. The virtual grid defined via the
snap(·) function had distance between grid lines, horizontal
and vertical, 0.1. In all cases, the online version of the learning
algorithm was used as opposed to the batch method.

Fig. 8. Run 2: The initial distribution of the iris data.

Fig. 9. Run 2: After 10 iterations the clusters are clearly formed.

Fig. 10. The initial distribution of the data.

1) Learning rate α = 0.01: When the learning rate α =
0.01 was used, it was visually observed that the two classes
were already separated (linearly) at the output in about 45
iterations through the data set. Continuing to run the algo-

4



rithm through 250 iterations, the two classes were moving
around, changing configurations. Their relative position was
only slowly changing and the two classes remained separated
through the end of the process. Figure 11 shows the final
configuration of the points, after 250 iterations. We note that
the points were spread out in a larger area, e.g. about 30 units
in the y-direction, than likely they would have been if the
grid was limited, say, to the unit square around the origin.
Figure 12 shows the error (Equation (3)) against the iterations.

Fig. 11. The final distribution of the data.

We see that there is continuous fluctuation, as opposed to the
prototypical LMS error curve that monotonically decreases
with the iterations, and the weight vector (matrix in the
current case) converges to a value. (Of course, instability
is possible for the LMS algorithm, e.g. if the learning rate
is large.) In this case, even though the weight matrix does
not converge to a value and the points in the output move
around, if the algorithm were to stop at any point after 45
iterations, the result would be acceptable. In general, with
every iteration, points change position, and hence there is a
possibility, which increases with larger α, that their output will
snap on a different point on the virtual grid. This injects non-
linearity and non-monotonicity into the process, not unlike
what happens in the Kohonen self-organizing maps when a
point, from one iteration to the next, causes another neuron
to be the winner. Low error does not necessarily imply that
the two classes are separated. It simply implies, that the points
are nearer to their corresponding desired outputs on the virtual
grid.

2) Learning rate α = 0.001: When the learning rate was
α = 0.001, it proved to be very small, and there was very little
movement of points in the output. The initial distribution of
points in output (Figure 10) remained almost identical to the
final one, after 250 iterations (not shown). Figure 13 shows
the plot of the error against the iterations. Even though the
error decreases, the configuration of the points does not change
in any substantial way from the initial output, before any
iterations of the algorithm.

Fig. 12. The error fluctuates. However, after 45 iteration the two classes
remained separated

Fig. 13. Although the error decreases, the configuration of the points
in the output essentially remains the same as the initial one.

3) Decaying learning rate: The learning rate α was initially
0.01 and then was decreased according to this formula:

αn = 0.01 ∗ e−
n(n+3)

k , (12)

where n is the iteration and k is constant. This formula and the
constant k = 10, 000 were found by experimentation: if the
decay was too fast, the clusters did not have the opportunity
to form, and the points settled in a fixed position. If the decay
was too slow, the weights were changing and the points were
moving around. The ideal decay would be for the clusters
to have the opportunity to separate, and then become fixed
in position. Figure 14 shows the error initially erratically
fluctuating, and after about 150 iterations it becomes smoother.
The two clusters settled in essentially the final configuration
(iteration 250) from iteration 100. (Figure 15)

C. The linear neuron

In experiments with the linear neuron using the iris data,
similar clustering behavior was observed. It was observed that

5



Fig. 14. The error with decaying learning rate.

Fig. 15. The final configuration of the clusters with decaying learning
rate.

on many occasions, in the initial output a class was already
separable from the other two classes. Nevertheless, applying
the algorithm showed that in general there is a tendency for
the formed clusters to remain intact. More experiments are
needed to compare the linear neuron with the quadratic one.

V. CONCLUSION

By introducing the concept of the virtual grid, where input
vectors define their own desired outputs, self-organization
has been shown to be possible with a single complex neu-
ron.The same algorithm can be easily modified using two
real neurons. Evenly distributed data on a 2-D array did not
cause clustering behavior in the output. The new fast and
economical method, involving only one neuron, promises to
be useful in the exploration of high-dimensional data, and in
applications where self-organizing maps are typically used.
It will be particularly suitable for real-time and other time-
critical applications. Given that training with the virtual grid
is a local technique, one may speculate whether analogous
self-organizing mechanisms exist in biological systems.

VI. BIBLIOGRAPHY

REFERENCES

[1] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological Cybernetics, vol. 43, 1982, reprinted in [16].

[2] ——, Self-Organization and Associative Memory, 3rd ed. Berlin:
Springer-Verlag, 1989.

[3] ——, “The self-organising map,” Proceedings of the IEEE, vol. 78,
no. 9, pp. 1464–1480, 1990.

[4] A. Hirose, Ed., Complex-Valued Neural Networks: Theories and Appli-
cations. World Scientific Publishing, 2003.

[5] A. Hirose, Complex-Valued Neural Networks, ser. Studies in Computa-
tional Intelligence. Springer, 2006, vol. 32.

[6] ——, Complex-valued Neural networks. Saiensu-sha, 2005, in
Japanese.

[7] T. Nitta, Complex-valued Neural Networks: Utilizing High-dimensional
Parameters, 1st ed. Information Science Reference, 1 2009.

[8] I. N. Aizenberg, Complex-Valued Neural Networks with Multi-Valued
Neurons, ser. Studies in Computational Intelligence. Springer, 2011,
vol. 353.

[9] S. Suresh, N. Sundararajan, and R. Savitha, Supervised Learning with
Complex-valued Neural Networks, ser. Studies in Computational Intel-
ligence. Springer, 2013, vol. 421.

[10] Z. Chen, S. Haykin, J. J. Eggermont, and S. Becker, Correlative
Learning: A Basis for Brain and Adaptive Systems (Adaptive and
Learning Systems for Signal Processing, Communications and Control
Series), 1st ed. Wiley-Interscience, 10 2007.

[11] K. E. Gustafson and D. K. Rao, Numerical Range: The Field of Values
of Linear Operators and Matrices (Universitext), 1st ed. Springer, 11
1996.

[12] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge
University Press, 5 1991.

[13] B. Widrow, J. McCool, and M. Ball, “The complex lms algorithm,”
Proceedings of the IEEE, vol. 63, no. 4, pp. 719–720, 1975.

[14] G. Georgiou, “Exact interpolation and learning in quadratic neural
networks,” in IJCNN ’06. International Joint Conference on Neural
Networks, 2006, pp. 230–234.

[15] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of Eugenics, vol. 7, no. II, pp. 179–188, 1936.

[16] J. Anderson and E. Rosenfeld, Eds., Neurocomputing: Foundations of
Research. Cambridge: MIT Press, 1988.

6


