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Abstract—The field of values of a matrix, also known as
the numerical range, is introduced in the context of neural
networks. Using neural network techniques, an algorithm
and a generalization are developed that find eigenpairs of
a normal matrix. The dynamics of the algorithm can be
observed on the complex plane. Only limited visualization
is possible in the case when the matrix is Hermitian (or
real symmetric) since the field of values is confined on the
real line. The eigenpairs can serve as stored memories,
which are recalled by using the algorithm. Shifting in
the algorithm is also discussed, which assists in finding
other eigenpairs. Trajectories of runs of the algorithm
are visually presented, through which the behavior of the
algorithms is elucidated.

Index Terms—Complex-valued neural networks, field of
values, numerical range, eigenvectors, eigenvalues, normal
matrices.

I. INTRODUCTION

N this paper, the field of values of a matrix [1]
[2], which is also known as the numerical range,

is introduced in the context of neural networks, and in
particular, in that of complex-valued neural networks. It
seems that the field of values has not been previously
used in any significant way in neural networks or in
other engineering applications. For an n X n matrix A
with complex entries, the field of values F' is defined as
F(A) ={X"AX : X e C"and || X|| =1}, (1)
where X* denotes the conjugate transpose of X. F'(A)
is a connected, convex and compact subset of C. It can
be thought of as a picture of the matrix that provides
useful information about it. [3] For example, the F'(A)
of a Hermitian matrix is a line segment on the real line,
whereas for a normal matrix, in general, is a polygon.
A learning rule, and a generalization, that computes
eigenvectors and eigenvalues of normal matrices will
be derived. Properties of the field of values and neu-
ral techniques, such as gradient ascent and constrained
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optimization, were used in its development. Necessarily
the backdrop of the learning rule is the complex domain.

Complex-valued neural networks is an active area of
research with many applications. [4]-[10] While in most
cases complex-valued connection matrices have been
taken to be Hermitian, e.g. that of the complex Hopfield
network, there has been early work in the area that
suggested that more general complex connection matri-
ces provide a richer set of dynamic behavior. [11] [12]
The present work mainly deals with normal matrices,
which includes Hermitian matrices as a subset, and in
particular in the iterative computation of eigenvalues and
eigenvectors of normal matrices.

There is a plethora algorithms in neural networks
which involve computing the eigenvectors and eigen-
values of matrices. Some well known examples include
Oja’s rule [13], for extracting the principal eigenvector
of the correlation matrix of the inputs, and Sanger’s al-
gorithm [14] and the APEX algorithm [15], [16], the last
two of which extract multiple eigenvectors by employing
lateral connections at the output neurons, implicitly or
explicitly. A fairly inclusive and comparative discussion
of such algorithms can be found in [10]. In addition, the
complex-valued counterparts of the algorithms are also
found in the same reference. Some examples of neural
computation (in the real domain) that compute eigenpairs
of given matrices include [17]-[20].

A. The field of values

We will look into the properties of the field of values
of an n X m square matrix with complex entries, which
we denote by M, (C), or simply by M,.

Several definitions and results from the theory of
matrices will be needed and will be given below. Proofs
of the theorems and other information on F'(A) can be
found in these references [1], [2].

Theorem 1: Let A be in M,,. A is normal if and only
if there exist unitary matrix U and diagonal matrix D
such that A = UDU"*.

In this previous theorem, the diagonal entries of D are
the eigenvalues of A, and the columns of U are the
corresponding eigenvectors.
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Definition 1: Let A in M,, be a given matrix. The field
of values or numerical range of A is defined to be the
subset of the complex plane

F(A) = {X"AX : X eC"and | X|| = 1}. @)

Thus the field of values is the set of points X*AX on
the complex plane when X takes all values on the unit
sphere.

Of great importance is the nature and shape of F'(A),
which are discussed next.

B. The geometry of F(A)

Here we present properties of the field of values that
are useful in understanding the geometry of F'(A).

Theorem 2: Let A be in M,,. Then, F'(A) is a compact
and convex subset of the complex plane.

We denote the spectrum of a matrix A € M, that is,
its set of eigenvalues, by o(A), and the convex hull of
aset S C Cby Co(9).

Property 1: If a € C, F(0A) = aF(A).

Property 2: If § € C and [ is the identity matrix,
F(A+pBI)=F(A)+p.

Property 3 (Normality): If A is a normal matrix in

M, then F(A) = Co(c(A)).
Since o (A) is a finite set of points, at most 7, the field of
values F'(A) of normal matrix A is a polygon, possibly
collapsed to a line segment or to a point. Since all
eigenvalues of a Hermitian matrix are real, and Hermitian
matrices are normal, it can be concluded that their field
of values is a line segment on the real line, with the
endpoints being the extreme eigenvalues.

It has been proven that for any A € M, F(A) is
an ellipse, which, however, could degenerate to a line
segment or a point. For n > 3 dimensions, there is
a great variety of shapes of F'(-). However, there no
general characterization. [2, p. 48]

The direct sum of two matrices, A ® B, A € M, and
B € M;, is a new matrix C' € Mj; formed by placing
the matrices so that their main diagonals taken together
are the diagonal of C, and the remaining entries are zero:

A0
C-A@B:[O B} )
Property 4: For all A € M and B € M,
F(A® B)=Co(F(A)UF(B)). 4

The latter property gives us a means of constructing
complicated F'(-) from simpler ones.

Definition 2: Let A € M,,. A point v on the boundary
of F(A) is called a sharp point [2, p. 50] if there are

where R(-) indicates real part.

Intuitively, a sharp point is “corner” on the boundary of
the field of values; that is, a point where there are two
tangent vectors, depending on the direction of approach.
Thus, the polygon vertices of the field of values of
a normal matrix, its eigenvalues, are sharp points. An
eigenvalue that happens to be collinear with two adjacent
ones will not be a sharp point. Sharp points are called
extreme points in [1], where an alternative definition is
used.

Theorem 3: If « is a sharp point of F'(A), where A €
M,,, then « is an eigenvalue of A.

The next theorem characterizes sharp points.

Theorem 4: Let A € M,, and « be a sharp point of
F(A). Then, the unit vector X for which o = X*AX
is an eigenvector of A. [2, p. 55]

If A is a normal matrix with distinct eigenvalues, the
last two theorems imply that if we find a unit vector X
such that X*AX is a vertex of F(A), then X*AX is an
eigenvalue of A and X is the corresponding eigenvector.

C. Examples of field of values

Plotting of the field of values of matrices can be
done by generating its boundary point-by-point, and
connecting the points. [2, p. 33] Figures 1 through 4
show the field of values of various matrices. The + signs
in the plots indicate the eigenvalues.

D. Constructing normal matrices

A normal matrix with a given set of eigenvalues
and corresponding eigenvectors can be constructed by
using the unitary decomposition of normal matrices
(Theorem 1):

A=UDU* 6)

The columns of unitary matrix U are the normalized
(orthogonal) eigenvectors and D is a diagonal matrix
with entries being the corresponding eigenvalues.

To construct a normal matrix with given eigenvalues
and random eigenvectors, the QR factorization [21] can
be used. Given a matrix /N with random entries, it can
be decomposed as N = @R, where () is a unitary
matrix and R is an upper triangular matrix. Matrix R
is discarded. Using () in the place of U in Equation (6),
normal matrix A is obtained.

II. THE NEW LEARNING RULE

angles 61 and 0> such with 0 < 61 < 62 < 7 for which  A. Description of the proposed method
R(e?a) = max{R(B) : B € F(e A) for all 6 € (61,05)}, A new learning algorithm is derived which can be used

&)

to find the eigenvectors of a given normal matrix. The
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Fig. 1. F(A), A € M. A is random.

=2 b\

Fig. 2. F(A), A € M. A is random.

algorithm works best for normal matrices that have dis-
tinct eigenvalues and no three of their eigenvalues lie on
a line on the complex plane. The algorithm convergences
to corners in the field of values. For example, Figures 1
and 2 show that all eigenvalues that are internal to the
field of values. The learning rule presented here will not
converge to any of the eigenvalues of the corresponding
(non-normal) matrices.

Theorem 5: Let f be a convex function defined on the
bounded, closed convex set €. If f has a maximum over
Q, it is achieved at an extreme point of €. [22, p. 198]

Since the field of values F'(C) is a (polygonal) bounded,
compact convex set, and f(z) = z Z = |2|, z € F(C),
is a convex function, f(z) is maximized when z is an
extreme point (a corner) of F'(C'). The overbar denotes
complex conjugation. Note that f(z) is simply the square
of the Euclidean distance of point z = Y*CY from the
origin, for some Y € C", ||Y|| = 1.

10

Fig. 3.

Fig. 4. F(A), A € Ms. A is normal.

We use constrained gradient ascent to obtain Y that
solves this optimization problem:

Yl =1, (7

maxgq q,

where we define ¢ = Y*CY. Using A\ as a Lagrange
multiplier, the problem now becomes maximizing func-
tion g:

g(Y)=qq—AY"Y —1). (®)

The (complex) gradient of function g : C" — C" with
respect to its argument Y € C™ is defined as

Vyg(Y) = Vy,g(Yr) +i Vy,g(YD), ©)

where Y is split into real and imaginary parts: ¥ =
Yr +1 Yy, with YR, Y7 € R™. The gradients in the RHS
of (9), involving vectors in R”, have the usual meaning.
As usual, § = /—1.

The gradient Vy g(Y'), which will provide the basis
for the learning rule, is derived to be

Vyg(Y) =2(qC* +qC)Y — 2)Y. (10)
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Proof: The first term in the RHS will first be

derived. We define £ =q @
VyE = 2(qC* +qC)Y. (11)

Writing Y in terms of its real and imaginary parts, E is
expanded as follows:

E qq
(Y*CY)(Y*CY)
= (Y*CY)(YTCY)
= (Y —ivHowE +ivf)

(Yg +Y7)C(YVg —iY])  (12)
The gradient of Equation (11) becomes:
oFE  OF
B S I SV
= gy, Tave? T gy, T oy 009

= q((C+C )YR—H'@ Y —i CYp) +
G(C+C)Yr+iCYr —i CTYI))
((ZCYR—ZC YR+(C+C )X71) +

~.

(i CTYr —i CYr + (C+CT))) (15
= q(2C7Y) +7q(2CY) (16)
= 2(¢C" +qO)Y. (7

The second term of the RHS in Equation (8) is derived
by expanding Y':

Y = (Yir+i Yi7, Yor+i Yar,. .., Yur+i Yor)t. (18)

Vy(Y*Y) = Vy(YiR+ Y3 +YR+Y5 +... +
Y2e 4+ Y2 (19)
— 2y (20)
m

At equilibrium, the gradient in Equation (10) equals
zero, and Y'Y = 1. Setting Equation (10) to zero and
left multiplying it by Y*, we have

2qY*C*Y + 2GY*CY = 2\Y*Y. Q1)

Using the fact that that Y*C*Y = (Y*CY)* = g, the

previous equation becomes

\ = 243. (22)

Substituting A in Equation (10), we can arrive at this
gradient learning rule:

AY = a ((¢C* +qC)Y — 2qqY), (23)

where « is a small positive constant, the learning rate.
A factor of 2 has been absorbed in it. An alternative

derivation of (23), using Wirtinger calculus, appears in
the Appendix. The first term in (23) is for maximiza-
tion, while the second is for normalization. In neural
networks, the classic example of maximization with the
normalization constraint is Oja’s rule [13]. Its complex
version can be found in this reference [10]. While Oja’s
rule also consists of a maximization and a normalization
factor, it differs substantially in how it is applied from
Equation (23): in Oja’s rule the input is varied and the
weights converge to the principal component, i.e. the
eigenvector that corresponds to the largest eigenvalue of
the correlation matrix of the inputs. In the derived rule
above once the initial value of Y is given, the algorithm
modifies Y until convergence. If C' is a normal matrix,
in general, it will converge to an eigenvector Y, and the
corresponding eigenvalue will be ¢ = Y*CY.
By rewriting Equation (23) as

AY = a((¢C*+qC)—2qql)Y
a(q(C" =ql) +q(C —ql))Y, (24)
where I € M, is the identity matrix, we note that the

quantity by which Y is multiplied is a Hermitian matrix.
This follows from the fact that g is a complex scalar and
that for any matrix A € M,,, A+ A* is Hermitian.

The algorithm of Equation (23), being a gradient
optimization method, depends on the initial value of Y.
It is possible that, as is the case of the power method
algorithm [23], [24], if Y is initialized so that it does
not have a component in the direction of an eigenvector,
it will not converge to an eigenpair. To understand this
scenario, consider a real C' and a real initial vector Y:
no imaginary component be generated for Y and ¢ in the
course of the algorithm, even if all eigenpairs may have
imaginary components. However, numerical roundoff
errors may contribute to such a missing component, and
the algorithm may work after all. It is best if the real and
imaginary parts of the components of Y are initialized
with non-zero values .

The algorithm will tend to converge to eigenvalues
that are far away from zero. This is explained by the
fact that the learning rule tries to maximize the distance
of ¢ from the origin.

A more general learning rule can be derived that will
maximize the distance of ¢ from an arbitrary point ¢ € C.
Equation (8) becomes
—)(g—c) = AY*Y —1). (25
Following similar steps as in the derivation of the previ-
ous learning rule, the new learning rule can be derived
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AY = a(((¢g—¢)C"+(@-20)O)Y
(¢(@—72) +a(qg—0))Y)
= a(((¢g—c)C"+(7—2¢)C) —
(¢@@—72) +a(g—))Y)
= a((g—o)(C"—7ql)+
(@—0o)(C—ql))Y

Obviously, when c is at the origin, this learning rule
collapses to the earlier one. The quantity by which Y
is multiplied with is, again, a Hermitian matrix. When
the goal is to find as many eigenvalues and eigenvectors
of the normal matrix C as possible, it is best to pick
c such that it is in the interior of the field of values.
Otherwise, as above, the algorithm may never converge
to eigenvalues that are close to c: simply the algorithm
favors those that are far away, unless, of course, it gets
stuck in a local minimum, manifested as an eigenvalue
closer in distance from c. A natural choice for c is the
average value of the trace of matrix C'

Ai
Z Tr(C)

c= = : 27)
n n

(26)

where \;’s are the eigenvalues, including multiplicities,
and C' € M,,. If C is normal and the eigenvalues are
distinct, i.e. each will be a vertex of a polygon that
contains the field of values F'(C), ¢ will be the centroid
of F(C).

An alternative method to avoid using the learning
rule of Equation (26) is to use a new matrix C =
C —cl. This transformation is being used in the shifted
power iteration and shifted inverse iteration methods of
computing eigenvalues and eigenvectors. [24] Then, by
Property 2, F(C) = F(C) — ¢. Point ¢ in F(C) will
be translated to the origin. The original learning rule
of Equation (23) can be used. Note if the eigenval-
ues of C' are A\g, A\1,...,\,, the eigenvalues of C are
Ao — ¢, A1 — ¢, ..., Ay — c. The respective eigenvectors
of C and C' are the same.

Proof: Let A\; be an eigenvalue of C, and the
corresponding eigenvector be Y;. Then, CY; = \;Y;.

CY; = (C—cl)Y; = CY;—cY; = \iYi—cY; = (\i—c)Y;

(28)
Hence, \; — ¢ is an eigenvalue of C and Y, is the
corresponding eigenvector. [ |

This translation (shifting) method can be viewed and
used as a deflation process: once an eigenpair (\;, ;) of
C'is found, the new matrix C=0C — ;I is formed. Since
A; has been translated to the origin, the learning rule of

Equation (10) will not converge to it again, and another
eigenpair will be computed. However, this translation
cannot be used simultaneously with multiple distinct
eigenvalues since only one eigenvalue can be translated
at the origin at one time.

B. Discussion of new method in relation to other meth-
ods of finding eigenpairs

The new method (Equation (23)) starts from a ran-
dom initial vector and iterates until it converges to an
eigenvector; the corresponding eigenvalue can then be
computed. At each iteration, the method multiplies a
matrix with the Y vector and applies a normalizing term.
It resembles the power method, which finds the dominant
eigenpair. At every iteration, the power method computes
vector Y <— CY and then explicitly normalizes Y. Even-
tually, it converges to the eigenvector that corresponds to
the dominant eigenvalue, which is required to be a single
one for the method to work. As shown in the results
section, the proposed method converges to eigenpairs
even when all eigenvalues have the same magnitude, e.g.
the case in Figure 6, depending on the initial value of Y
and the geometry of the field of values. Hence, the aims
of the two methods are different.

Another method that starts from an initial vector and
iterates until convergence is Newton’s method for finding
eigenpairs. [25], [26] Newton’s method requires that at
each iteration an (n + 1) x (n + 1) system of linear
equations is solved, or equivalently, to invert a matrix of
the same dimensions. This complexity makes the method
less neural-like, and it is not the aim of the paper to
compare it with the new method.

When the goal is to find all eigenpairs of matrices
conventional techniques, such as the QR or the Jacobi
method [23] are better suited for the task.

III. EIGENVALUES AND EIGENVECTORS AS STORED
MEMORIES

Since both learning rules, Equations (23) and (28),
converges to both eigenvectors and eigenvalues, these
two quantities can serve as the stored memories. We
note that the eigenvectors that correspond to distinct
eigenvalues of normal matrices are orthogonal. It is well-
known that correlation matrix memory and the discrete
Hopfield neural network can recall, in general, orthog-
onal vector memories perfectly. [27], [28] However the
basin of attraction and the trajectory of attraction cannot
be easily visualized. The present method, using the field
of values, provides a convenient way to visualize the
dynamics of the learning rule in 2-D. The trajectory
of the value ¢ = Y*CY, given an initial value of
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Y, on the complex plane, reveals both qualitative and
quantitative dynamic information of the process. This
type of information is limited to 1-D in systems where
the matrix is Hermitian (or symmetric in the real case),
which is the common case in Hopfield networks and
matrix associative memories. Dynamics on 1-d is not
conducive to visualization. The complex plane provides
an appropriate medium for visualization.

Let X = (X, Xo,...,Xy) in M, where the X;’s
are the (column) vectors to be associated (stored) in the
normal matrix C' € M,,. It is assumed that the X;’s are
linearly independent. We associate each X; with column
vector U; through this linear mapping:

X =PU (29)
where U = (U, Us,...,U,) € M, is unitary, and
P € M,. Unitary matrix U can be chosen in a variety
of ways: it may be random, the unitary matrix in the
polar decomposition of X, a Hadamard matrix (a unitary
matrix with entries in {1, —1}), etc.

The next step is to construct a normal matrix C' € M,
having the U;’s as its eigenvectors. For that purpose we
use the unitary decomposition of normal matrices:

C=UDU", (30)
where D € M, is a diagonal matrix of which the
d; = d;; entry is an eigenvalue of C' with corresponding
eigenvector U;. Hence, X is associated with d; as well.

The eigenvalues d; of C are the attractors during the
recall process. If it is desirable that the memories are
stored in a symmetric way, which avoids undue bias
toward any memory during recall. For this purpose, we
choose d; to be the n roots of unity to be the eigenvalues:

s 21k

di=e""  k=0,1,...,n—1. (€2))
The stored information is in the set { P~1, C'}. Matrix
P is invertible due to the linear independence of the Xj.
The recall process is best observed in the field of
values F'(C).
Suppose that X; € C" is a given probe vector, and it
is desired to find the closest stored vector X.
We first form Y; € C?
v, =PX,. (32)
Vector Y; is used as the initialization vector in either
one of the learning rules, (23) or (26). Once the process

converges to an eigenvector Y; of C, the recalled vector
is X; = PY,.

IV. RESULTS

To explore the efficacy of the learning rule of Equa-
tion (23) several experiments were conducted. In general
the algorithm was shown to be quite robust. As long as
the learning rate o was sufficiently small, the algorithm
converged to an eigenvalue and the corresponding eigen-
vector. Beginning with Figure 5, each eigenvalue (vertex)
is color coded. The initializing vector corresponds the
point furthest away from the eigenvalue (vertex of the
polygon), and as the algorithm progresses, the initial
point follows a trajectory that ends up at the eigenvalue.
This color scheme is akin to the one used to described the
fractal behavior of Newton’s method in finding roots of
polynomials. [29] Each root has a different color which
is the same for points in its region of attraction.

Figure 5 shows the trajectories of 500 runs of the
learning rule in Equation (23). The distance of the final
q to the actual eigenvalue, the error, was found to be
less than 10~° on the average. For each run, normal
matrix C' € Mg was generated with random eigenvectors
and given eigenvalues (Section I-D). The vertices of the
rqg}rlklar hexagon are the eigenvalues of C, which are
e ,k =0,1,...,5; i.e. six 6-th roots of unity. The
hexagon itself and its interior make up the field of values
of C. Each initial Y was randomly generated and its
trajectory has the color of the eigenvalue it converged
to. The value of the learning rate used was o = 0.01.
Each run was stopped after 500 iterations.

To clearly show the regions of attraction of each
eigenvalue, the algorithm was run 5,000 times, each
again with a random initial Y, while all other variables
remained the same. The result is shown in Figure 6. The
regions of attraction are well defined, however, as it can
be seen especially from Figure 6, they are not exclusive.
On occasion, an initial value of ¢ happens to follow a
trajectory away from the closest eigenvalue. Figures 7
(C € Mg) and 8 (C € Ms) each show 100 runs of the
same rule (Equation (23)). The initial Y's were randomly
generated. For each run, matrix C' was generated with
random eigenvectors and as eigenvalues the 6-th and 5-
th roots of unity, for the respective figures. From the
trajectories, it can be seen that eigenvalues (and their
corresponding eigenvectors) that are furthest away from
the origin are favored by the algorithm to converge to.
This can be explained from the fact the learning rule tries
to maximize the distance of g from the origin. Eigenval-
ues that are not at a maximal distance from the origin
and yet the algorithm converges to them, correspond to
local minima. Figures 9 and 10 show 100 runs of the
generalized learning rule of Equation (26). The values
of ¢ are 0.5 + ¢ 0.5 and —1 — 4, respectively. While
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Fig. 5. The trajectories of 500 runs of the algorithm.
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Fig. 6. The trajectories of 5,000 runs of the algorithm.

the trajectories and convergence behavior in general are
comparable to first rule, an anomaly was observed: when
the origin was outside the field of values, the algorithm
sometimes converged to it, even though it was not an
eigenvalue. This can be seen in Figure 10. The final ¥
values in those cases were the zero vector or, rarely, very
close to it.

For higher dimensions, polygons approach smooth
curves, and it becomes difficult to distinguish the individ-
ual eigenvalues (vertices). For example, Figure 11 shows
a regular polygon with 100 vertices which approaches
a circle. The vertices and the corresponding regions of
attraction are not easily distinguishable. Each run (point
in the trajectory) was stopped after 1,000 iterations.

The method appears to be quite robust in the sense
that as long as the learning rate was small (0.01 in
most our cases) and the values of matrix entries and the
initialization weights were small, each component less
than 1, the algorithm was well-behaved, i.e. it converged
without becoming unstable.
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Fig. 7. The trajectories of 100 runs of the algorithm.
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Fig. 8. The trajectories of 100 runs of the algorithm.

It is noted that if at any time in the course of the two
algorithms Y takes the value of the zero vector, Y cannot
change; it is stuck at the zero vector. It seems unlikely
for this to happen with the learning rule of Equation (23),
since ¢ is specifically designed to move away from the
origin. This is not the case in the generalized algorithm,
which is designed for ¢ to move away from point c.
While more analysis and experiments are needed to
further explain the anomalous behavior of convergence to
zero, it seems clear that the first algorithm is preferable.
Instead of using the generalized algorithm, one can use
the translation method together with the first algorithm,
as explained at the end of Section II.

V. CONCLUSION

Although the field of values of a matrix is well-known
in mathematics, it does not appear to have been used in
any significant way in neural networks or in other fields
of engineering. Using neural networks techniques and
the field of values, the two algorithms which were in-
troduced find eigenpairs of normal matrices. It has been
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Fig. 9. The trajectories of 100 runs of the generalized algorithm,
with ¢ = 0.5+ ¢ 0.5.
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Fig. 10. The trajectories
algorithm, with ¢ = —1 — 3.

of 100 runs of the generalized

demonstrated that the generalized algorithm sometimes
converges to the origin without it being an eigenvalue.
This aberrant behavior was exhibited when the origin
was outside the field of values. The first algorithm,
which maximizes the distance of ¢ from the origin,
experimentally was shown to be stable, converging to an
eigenpair given that the initial vector was random and
the learning sufficiently small.

APPENDIX
ALTERNATIVE DERIVATION OF LEARNING RULE
USING WIRTINGER’S CALCULUS

We derive the learning rule of Equation (23) using
Wirtinger calculus. [30], [31] We would like to maximize
function g in Equation (8):

g(Y,Y") =

qq— XYY —1). (33)

8
15
0.0
—10b-
“133 10 05 0.0 05 10 15
Fig. 11. The trajectories of 30 runs on a regular polygon with
100 vertices.
The Wirtinger gradient Vy-(-) = V is as follows:
Vg = qVqg+qVqg— Y
= ¢VY*CY +qCY —\Y
= ¢V(Y*C*Y)+gCY — \Y
= ¢C*Y +qCY —\Y. (34)

At equilibrium the above equation will be equal to zero
and Y*Y = 1. Setting the equation to zero and left
multiplying by Y*, we proceed as in Equations (21) and
(22) (without the factor 2, which it is absorbed in the
Wirtinger gradient):

qY*C*Y +qY*CY = \Y*Y. (35)

\ = 243. (36)

Finally, we arrive at the learning rule of Equation (23)
by considering the gradient in (34):

AY =a ((¢C* +7qC)Y —2¢gY). (37)
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