(© 2015 IEEE, Reprinted with permission, George M. Georgiou, Kerstin Voigt, Haiyan Qiao, “Stochastic Computation
of Dominant Eigenvalue and the Law of Total Variance”, Proceedings of The 2015 International Joint Conference on
Neural Networks, IEEE, Killarney, Ireland, July 12-15, 2015, pp. 3246 - 3249.

Stochastic Computation of Dominant Eigenvalue and the Law of
Total Variance

George M. Georgiou, Kerstin Voigt, Haiyan Qiao

Abstract—Qja’s neuron is extended to find the dominant eigen-
value alongside the computation of the dominant eigenvector.
This is achieved through a stochastic gradient descent learning
rule that computes the second moment of the neuron output.
The effectiveness of this family of learning rules is further
demonstrated in a network that verifies the law of total variance.
The inputs are generated by a doubly stochastic process, and
conditional means and variances are accurately computed and
propagated in the network. The law of total variance has been
recently used in the analysis of biological experiments to explain
neural processes.

I. INTRODUCTION

ARIANCE of inputs is an important statistical quantity

both in artificial neural networks, and in related areas
such as pattern recognition, signal processing and neuro-
science. The weight vector in Oja’s neuron [1] converges to
the direction of the dominant eigenvector of the correlation
matrix of the inputs. However, at the conclusion of training,
no information on the variance of the inputs is retained nor
can it be reconstructed since the correlation matrix is neither
computed nor saved.

We address this by extending Oja’s neuron to computing
the dominant eigenvalue alongside the dominant eigenvector.
The dominant eigenvalue itself is the variance of the inputs in
the direction of the dominant eigenvector. Its computation is
achieved by applying similar techniques of a recent paper [2]
in which it was shown that statistical quantities, besides the
mean, such as variance, moments, central moments, skewness,
and kurtosis can be effectively computed via stochastic gra-
dient descent. The learning rule is similar in spirit with Oja’s
rule.

In [3] measurements were taken of the firing of single
neurons from the lateral intraparietal area (LIP) during a
decision making task, and the spike counts were analyzed
using the two parts of the RHS of the law of total variance.
The authors argued that with this perspective they were able
to expose several neural mechanisms and to help differentiate
alternative decision making models. While [3] addresses a
complex decoding problem using as a tool the law of total
variance, this paper pursues the related encoding problem in
the context of artificial neural networks. The doubly stochastic
process that generates the data is known, and the main goal
is to verify whether the law of total variance is satisfied when
the expectations and variances are stochastically computed,

George M. Georgiou, Kerstin Voigt and Haiyan Qiao are with the School
of Computer Science and Engineering, California State University, San
Bernardino, CA 92407, USA (email: {georgiou, kvoigt, hqiao} @csusb.edu).

instead of using statistical formulas. In this part we also use
the family of learning rules of [2].

II. EXTENDING OJA’S NEURON TO COMPUTE THE
DOMINANT EIGENVALUE

Oja’s neuron [1] is a simple neuron that computes the
principal eigenvector of the correlation matrix C = E[X X 7]
of the inputs X; € R™. The superscript T' indicates vector
or matrix transpose. The convention that vectors are column
vectors is followed. The weight vector W € R™ is updated
via Oja’s rule:

W(n+1) =W(n) +ayn)(X(n) —ym)Wn)), 1)

where « is the learning rate, a small positive constant, and
y = WTX is the linear output of the neuron. By suitably
decreasing « during the course of the algorithm, weight vector
[W| — 1, i.e. W is normalized, and W converges to the
direction of the dominant eigenvector of C. This W as a
consequence maximizes the variance E[y2] [4], [5] Although
the term variance is used, more appropriately it should be
second moment since there is no subtraction of the expected
value (the mean) from y. The maximization of E[y?] can be
seen from the following. At equilibrium, i.e. when W is not
changing,

E[y?] = EWTXXTW] = wTCw. 2)

The dominant eigenvector W is normalized and it maximizes
WTCW for all ||W| = 1, a well-known fact, and hence E[y?]
is maximized as well. Furthermore, at that state the dominant
eigenvalue of C is,

Amax = E[y?]. 3)

The problem addressed here is how to extend Oja’s neuron
to compute the dominant eigenvalue alongside the dominant
eigenvector. A weight \, an adjustable variable, is added at the
output of the Oja’s neuron, which will be trained to converge
to Amax (Figure 1). The method used is stochastic gradient
descent from [2]. The error function R of a sample of N
inputs is

1
R=35> (5] =V 4)

j=1
The error R is minimized when its partial derivative with
respect to A is zero, and at that time A\ equals the sample

second moment:
1N
A= 5)
j=1

L1 Ln

Fig. 1. The augmented Oja’s neuron: the weight X\ is added at the
output which converges to the dominant eigenvalue Amax. The linear
output of the neuron is y.

Weight A can be computed by performing instantaneous, i.e.
stochastic, gradient descent on R, using n as the time step:

A(n+1) = Mn) + a(y®(n) — A(n)). (6)

Using a small or decreasing o, A\ — Apax, as desired. The
update of (6) is performed in parallel with (1). Hence, the
dominant eigenvector and eigenvalue are computed simulta-
neously.

Oja’s neuron has been extended to networks of multiple
neurons, e.g. [6], [7]. Their weights converge to the other
less significant principal eigenvectors. The present method of
eigenvalue computation can be extended naturally to these
models to compute the corresponding eigenvalues.

III. RESULTS FOR EXTENDED OJA’S NEURON

To find the dominant eigenpairs of the correlation matrix C'
of the inputs, Oja’s rule (Equation (1)) was used to compute
the dominant eigenvector and the rule in Equation (6) to
compute the dominant eigenvalue. The two rules were updated
in parallel in the same loop.

The data set consisted of 100 vectors X € R*, where each
of their components was drawn from a uniform distribution
from the interval [—0.6,0.4]. The error for the dominant
eigenvalue is defined as ey = |\ — Apax/, the absolute value
of the difference of A and A;,,x, the dominant eigenvalue of
correlation matrix C'. The error for the dominant eigenvector
is defined as ey = ||W — Wq||, the Euclidean norm of the
difference of W and the dominant eigenvector ;. A constant
learning rate o = 0.01 was used. The eigenpairs consistently
converged close to their correct values. Figures 2 and 3 show
two sample runs. The two errors vs epochs are shown. It was
observed that consistently A\ converged faster to the correct

0.40 ‘Error v; epoch;

— Eigenvalue error
035} H , i E — Eigenvector error |4

50 100 150 200 250 300 350 400
Epochs

Fig. 2. Run I: The error from the actual dominant eigenpair.

035 ‘Error v; epoch;

— Eigenvalue error
0.30} - : . . — Eigenvector error | |

025}
0.20
0.15H -

0.10
0.05 \/—
0.00

0

Fig. 3. Run 2: The error from the actual dominant eigenpair.

n
50 100 150 200 250 300 350 400
Epochs

value than the average of each of the components of W did.
Using the same parameters and random distribution as before,

Error vs epochs

— Eigenvalue error

0.25

020

0.15

Epochs

Fig. 4. The error e from the actual dominant eigenvalue.

10 sets of 100 random input vectors were generated. The

dominant eigenvalue of the correlation matrix was calculated
in each case, and the error ey as it converged was plotted in
Figure 4. Within 50 epochs, in all cases the error became less
than 0.01.

IV. SIMULATING THE LAW OF TOTAL VARIANCE

In statistics the law of total variance, also known as Eve’s
law, for r.v. Y conditioned on r.v. X is expressed with this
equation:

Var[Y] = E[Var[Y|X]] + Var[E[Y | X]]. (7)

Both Var[Y'|X] and E[Y'| X] are random variables themselves
since they depend on X. When the random variables are
discrete,

E[Var[Y|X]] = ZVar[Y\X =i p(X =1) (8)

Var[E[Y[X]] = Y (EY[X =i] - p)*p(X =14), (9)
where p(X = ¢) indicates probability and p = E[E[Y|X]] =
E[Y].

The total variance Var[Y] consists of two parts: the expecta-
tion of the variances and the variance of the expectations. The
former is often referred to as the unexplained variance and the
latter as the explained variance. To visualize the distinction,
when X is a discrete variable, the variance in the unexplained
part is understood to be the within the group variation, where
groups are defined by each of the values of X, and the variance
in the explained part is the variation between the groups. [8]

We simulate an example of a doubly stochastic process with
dependent r.v. Y and independent r.v. X. The two random
variables have discrete joint probability distributions shown
in Table I. Variable X takes three values from {0,1,2}

TABLE I
JOINT PROBABILITIES OF X AND Y.
Y=1 Y=2 Row sum
X=0 0.1 0.2 0.3
X=1 0.1 0.3 04
X=2 0.2 0.1 0.3
Sum 04 0.6 1.0

with corresponding probabilities found under the “Row sum”
column. The values of X are merely labels and do not enter
any of the computations. Variable Y is taking values from
{1,2}. Using the probabilities in the “Sum” row of the table,
the expected value and variance of Y are readily calculated:
E[Y] = 1.6 and Var[Y] = 0.24.

The law of total variance for this example is represented as
a network in Figure 5. A sequence of values y; = (Y|X = 1)
is generated, one at a time, according to the probabilities in
Table I, and each value is propagated through the network.
The E[.] and Var[.] boxes in the path of an Y|X = i value
are updated: Each E[.] box has an adjustable variable m; that

converges to the mean of its inputs y;, and is updated according
the learning rule for the mean:

mi(n +1) = mi(n) + a;(yi(n) —mi(n)), (10)

where time step n is incremented only when there is new input
y; to box E[.]. The small positive value «; is the learning rate.
The output of each E[.] box is m;(n+1), the approximation of
the mean, and it feeds into the next stage and sometimes into a
Var[.] box. Each Var[.] box in the first layer has an adjustable
weight v; that converges to the variance of its inputs y;. It is
updated according the learning rule for the variance:

vi(n +1) = vi(n) + ai((yi(n) —mi(n))* — vi(n)), (A1)

where time step n is incremented only when there is new
input y; to box Var[.]. The update rule uses the mean value
m,;. The variance approximation of the output of each box
Varl.] is v;(n + 1) and it feeds into the next stage.

The stage before the summation box corresponds to the two
terms of the RHS of Equation (7). The Var[.] box maintains
and updates the variance adjustable variable v. In addition, it
maintains and updates variable m for the mean of its inputs,
which is needed in the update learning rule of v. The learning
rules for m and v are those in Equations (10) and (11),
respectively. Note that m computes p in Equation (9) and
v computes the LHS of the same equation. The E[.] box
maintains and updates a variable p g for the mean of its inputs.
The learning rule used for ug is that of Equation (10), and it
computes the LHS of Equation (8).

Y[X=0 = ‘
L Var[] 7 L Var| |
l N | E[] = i —L Var[Y]
| i Var|] J -
W E[]
YX=2 Eﬁ[]‘
Var[-]

Fig. 5. Simulating the law of total variance.

V. RESULTS OF THE SIMULATION OF THE LAW OF TOTAL
VARIANCE

The results of a typical run (Run 1) are shown in Figures 6,
7, and 8. They show each of the variables, mean or variance,
that is updated in the boxes of Figure 5. In total there are
five means, the m;’s, and four variances, the v;’s, that are
shown in the figures. All of them were initialized to 0, as it
can be seen in the figures. Initialization from other values in
[0,1] did not affect convergence to the steady state of their

08 Var[Y] vs no. of Y|X generated

— Var[¥] computed
0.7}
-- Var[y] expected

Var[E[Y] X]] computed |

— E[Var[Y|X]] computed
0.5 1

0.3H]-

02H==r=rmmm=s=EF =F 5

0.1

0.0

4000 6000 8000 10000

Fig. 6. Run I: Stochastic computation of Var[Y] using the law of total
variance.

E[V|X =1] vs no. of Y|.X generated

1o

Laf-

1.2

— E[Y1X=0] computed ||
— E[Vix=1] computed
— E[VX=2] computed ||

1.0

0.8

0.6

0.4

0.2

0.0

0 2000 4000 6000 8000 10000

Fig. 7. Run 1: Stochastic computation of E[Y'|X =4],7 =0,1,2.

Var[y]|X =i] vs no. of Y|X generated

0.9
o8 — Var[¥|X =0] computed

) — Var[Y|X =1] computed
07k — Var[Y]X =2] computed ||

0.1

0.0

6000 8000 10000

Fig. 8. Run 1: Stochastic computation of Var[Y'|X =14],i =0,1, 2.

values. The calculated value of each quantity is represented
by the corresponding horizontal line. Although the learning
rate a; could be individualized to each quantity, the same

value of 0.005 was used for all, and it was kept constant.
This insensitivity to the learning rate is a testament to the
robustness of the stochastic learning rules for the means
and variances. Experiments with greater and smaller values
of «; showed expected behavior: larger values resulted in
faster convergence but in more jagged curves, smaller values
resulted in slower convergence but smoother curves. All values
eventually converge to their corresponding calculated values,
and they remain there slightly oscillating. Oscillation can be
eliminated or minimized by reducing the learning rate.
Figure 6 shows Var[Y], the final output in Figure 5, i.e.
the LHS of Equation (7). It is smoother than all other curves
which shows that the cumulative effect of combining the other
quantities results in canceling out of errors. The accuracy
of Var[Y] at the output, as can be seen from the graph, is
remarkable, given that nine inherently inexact learning rules
contribute to its value. In addition, each generated value of
Y| X =i is presented only once to the network, as opposed to
forming a fixed dataset and repeatedly presenting it in epochs.

VI. CONCLUSION

Oja’s neuron, which computes the dominant eigenvector,
was augmented to compute the corresponding dominant eigen-
value of the correlation matrix of inputs using a simple
stochastic gradient descent rule. The eigenvalue is the second
moment of the projected inputs in the direction of the dominant
eigenvector, which conveys important variance information.
Experiments have shown the dominant eigenvalue is computed
just as efficiently as, and in parallel with, the dominant eigen-
vector. The effectiveness of the stochastic gradient descent
techniques in [2] was further demonstrated by applying them
multiple times in an experiment that verified the law of total
variance. Means and variances were accurately propagated in
the network, and the correct final value of the variance was
obtained. Figures were presented to show the convergence
behavior of intermediate computations of means and variances.

REFERENCES

[1] E. Oja, “A simplified neuron model as a principal component analyzer,”
J. Math. Biology, vol. 15, pp. 267-273, 1982.

[2] G. M. Georgiou and K. Voigt, “Stochastic computation of moments, mean,
variance, skewness, and kurtosis,” Electronics Letters, vol. 51, no. 9, pp.
673 — 674, 30 April 2015.

[3] A. K. Churchland, R. Kiani, R. Chaudhuri, X.-J. Wang, A. Pouget, and
M. N. Shadlen, “Variance as a signature of neural computations during
decision making,” Neuron, vol. 69, no. 4, pp. 818-831, 2011.

[4] J. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural
Computation, ser. Advanced book program. Addison-Wesley Publishing
Company, 1991.

[5] S. O. Haykin, Neural Networks and Learning Machines, 3rd ed. Prentice
Hall, 11 2008.

[6] T. Sanger, “Optimal unsupervised learning in a single-layer linear feed-
forward neural network,” Neural Networks, vol. 2, pp. 459-473, 1989.

[7] E. Oja, “Neural networks, principal components, and subspaces,” Inter-
national journal of neural systems, vol. 1, no. 01, pp. 61-68, 1989.

[8] J. Blitzstein and J. Hwang, Introduction to Probability, ser. Chapman &
Hall/CRC Texts in Statistical Science. CRC Press, 2015.

