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Stochastic computation of moments, mean,
variance, skewness, and kurtosis

George M. Georgiou and Kerstin Voigt

Stochastic computation of statistical moments and related quantities
such as the mean, variance, skewness, and kurtosis, is performed with
simple neural networks. The computed quantities can be used to estimate
parameters of input data probability distributions, gauge normality of
data, add useful features to the inputs, preprocess data, and for other
applications. Such neural networks can be embedded in larger ones that
perform signal processing or pattern recognition tasks. Convergence to
the correct values is demonstrated with experiments.

Introduction: Statistical moments and related quantities such as mean,
variance, skewness, and kurtosis have been used in pattern recognition,
adaptive filtering, signal processing and neural networks, and in general
are useful quantities in stochastic processes [1]. In this communication,
these statistical quantities will be computed stochastically, using
instantaneous gradient descent techniques that minimize the appropriate
error functional. To the authors’ knowledge, besides the mean, and that
only incidentally, for example, in self-organizing maps (SOMs) [2] and
related algorithms, the variance, skewness, kurtosis, and moments have
not been computed stochastically. The standard formulas of computing
these quantities require use of the number of input data vectors N , the
sample size [3]. Computing them stochastically has the advantage that no
knowledge of the number of input patterns is needed, and that they can be
available for use even in environments with time-varying input statistics,
which LMS algorithms are inherently able to do.

The mean and standard deviation, which is the square root of the
variance, are often used to preprocess data before presenting them to
a neural network, commonly to make each input component centered
around the origin and have unit standard deviation. Uses of the skewness
and kurtosis include gauging whether the underlying distribution is
normal [4] and characterizing the sharpness of tuning curves in the brain
[5]. Raw moments can be used in the method of moments to estimate
the parameters of an assumed underlying probability distribution function
(pdf) [6]. The kurtosis of the error signal, i.e. a mean-fourth cost function,
has been used for the LMS algorithm [7].

We show that the optimal learning rate for the introduced LMS rules
does not depend on the input data vector. The optimal learning rate is
derived from two different perspectives. In the usual LMS algorithm
there is such dependency which is accounted for in the Normalized LMS
(NLMS) algorithm [8].

We performed experiments that show that the algorithms converge to
accurate estimations of the various statistical quantities.

The rule for the mean: For input vectors x1, . . . ,xN , where xi ∈Rn,
consider the error functional F1:

F1 =
1

2

N∑
i=1

‖xi −w1‖2, (1)

where w1 ∈Rn is an adjustable weight vector. The symbol ‖ · ‖ indicates
the Euclidean norm. The instantaneous gradient of F1 with respect to w1

is

∇w1F1 =−
N∑
i=1

(xi −w1). (2)

Setting the gradient to zero, at equilibrium, the value w1 that minimizes
F1 is

w1 =
1

N

N∑
i=1

xi, (3)

which is the mean µ, a well-known fact. For a given input vector xi,
from (2), the stochastic, i.e. the online, as opposed to the batch method,
gradient descent learning rule is

w1(n+ 1) =w1(n) + α(xi(n)−w1(n)). (4)

Parameter α is the learning rate, a small positive constant. As usual, w1

is initialized to small random values. At convergence, w1 = µ, the mean
vector. Computing the mean using this rule does not require knowledge of

the number of input vectors. The shape of the error function F1, except in
degenerate cases, is bowl-shaped with a single minimum at the mean.
This learning rule is akin to the update rule of self-organizing maps
(SOMs) [2]. In SOMs, during training each input vector is assigned to
a winning neuron, hence the computed mean, or centroid as it is called
in context of SOMs, is local to that specific neuron, and also temporal
since in the course of training input vectors are assigned and de-assigned
to a particular neuron. At convergence, however, the input vectors settle
to specific neurons, and each weight vector of a neuron converges to the
mean of the associated input vectors.

Central moments: The k−th central moment of component j of input
vector xi is defined as

mjk =
1

N

N∑
i=1

(xji − xj)k, (5)

where xj is the mean. We can rewrite (5) in vector format:

mk =
1

N

N∑
i=1

(xi − x).k, (6)

where the superscript .k indicates element-wise exponentiation. All
components are processed independently. There is no need to use new
element-wise operations for the mean in (4) since vector subtraction and
scalar multiplication are already element-wise operations. It is noted that
m1 = 0, the first central moment. The second central moment m2 is
a vector that has the variance σ2 for each component. To derive the
stochastic gradient rule on wj

k that will converge central moment mj
k,

we define a cost functional F jk :

F jk =
1

2

N∑
i=1

(
(xji − xj)k −wj

k

)2
(7)

The functional F jk is minimized when wj
k equals the central moment

mj
k. We substitute xj with the w1 in (4), the mean as is being computed.
The partial derivative of F jk with respect to wj

k is

∂F jk

∂wj
k

=−
N∑
i=1

(
(xji −wj

1)
k −wj

k

)
. (8)

When the partial derivatives for all j become zero, the weight vector
wk =mk, the k−th moment of the inputs. The online gradient descent
rule takes the form

wk(n+ 1) =wk(n) + α((xi −w1(n)).
k −wk(n)). (9)

For each each input xi that is presented, weight vectors w1 and wk
are being updated in parallel or sequentially using Equations 4 and 9,
respectively. The learning rate α may be chosen to be the same or be
different for the two equations.

Raw moments, as opposed to central moments, can be computed with
the rule of Equation 9 and setting w1 to the zero vector:

wk(n+ 1) =wk(n) + α((xi).
k −wk(n)). (10)

Skewness and kurtosis: Skewness is a measure of the bias of the data
around the mean: positive implies data are spread to the right of the mean
and negative to the left. The sample skewness γ1 for component j of xi,
the single random variable xji , is defined as

γ1 =
1
N

∑N
i=1(x

j
i − xj)3

( 1
N

∑N
i=1(x

j
i − xj)2)3/2

=
mj

3

(mj
2)

3/2
. (11)

Central moments mj
3 and mj

2, the variance, can be computed
stochastically using Equations 4 and 9, and hence skewness can be
computed stochastically.

Kurtosis γ2 is a measure of "peaketness", i.e. how flat or how peaked
the data distribution is. For xji , it is defined as

γ2 =
1
N

∑N
i=1(x

j
i − xj)4

( 1
N

∑N
i=1(x

j
i − xj)2)2

=
mj

4

(mj
2)

2
. (12)

As for skewness, kurtosis can be computed stochastically using
Equations 4 and 9 to compute the moments mj

4 and mj
2.
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Normalization rules: The stability and convergence properties of LMS
can improved by using the Normalized LMS (NLMS) [8], which uses a
variable learning rate α(n) = 1

x(n)T x(n)+γ
, where γ is a small positive

real constant added to prevent division by zero. [9] In a like manner we
will derive the optimal value of α(n) in the learning rules of (4) and
(9). NLMS can be derived from different vantage points. We will use the
minimization of the a posteriori error [9], i.e. the to find optimal α(n) that
will minimizes the square of the error (ej(n))2 after the weight vector
wk has been updated:

ej(n) = (xji (n)−wj
1(n))

k −wj
k(n+ 1). (13)

Substituting wj
k(n+ 1) from (9) and omitting time step n,

ej = (xji −wj
1)
k − (wj

k + α((xji −wj
1)
k −wj

k)) (14)

ej = ((xji −wj
1)
k −wj

k)(1− α) (15)

The partial derivative of (ej(n))2 with respect to α(n) is zero when
α(n) = 1. This implies that the optimal learning rate α, unlike the usual
LMS algorithm, does not depend on input vector x(n).

The same result can be arrived at by solving the analogous to the
NMLS constraint optimization problem, that minimize the square of the
Euclidean norm of the weight change under a constraint:

Minimize ‖wj
k(n+ 1)−wj

k(n‖
2 (16)

subject to wj
k(n+ 1) = xji (n). Using component j of (9) and the

constraint, the weight change is written as follows:

wj
k(n+ 1)−wj

k(n) = α(xji (n)−wj
k(n)) = α(wj

k(n+ 1)−wj
k(n)).

(17)
Again, it is concluded, that α(n) = 1, independent of x(n). This result
is applicable to the update rule of SOMs, and could imply that these
algorithms are less sensitive to sudden changes in the magnitude of the
inputs as is the case in the usual LMS algorithm which is stabilized with
the NLMS.

Results: As test cases we present two runs that show the convergence
behavior of the algorithms in computing the mean (Equation 4) and
central moments k= 2 (variance), 3, and 4 (Equation 9) in Fig. 1;
in Fig. 2, the mean (Equation 4), variance (Equation 9), skewness
and kurtosis are shown. The latter two quantities are computed using
Equation 9 to compute the appropriate central moments and Equations 11
and 12, respectively. The horizontal lines are the corresponding computed
values via the statistical formulas. In each case, 100 sample points were
drawn from a gaussian distribution with mean 0.5 and variance 1.44. A
fixed learning rate α= 0.001 was used. As it can be seen, within about 70
epochs, the values converged to the computed equivalents. Convergence
of the central moments, of course, depends on the convergence of
the mean. Skewness was the slowest to converge after the mean had
converged.
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Fig. 1. Convergence of the moments (mean, variance, moment 3, moment 4)

0 20 40 60 80 100 120 140

Iterations

2

0

2

4

6

8

10

12

14

16
Statistical values vs Iterations

Mean
Variance
Skewness
Kurtosis

Fig. 2. Convergence of mean, variance, skewness, and kurtosis)

Conclusion: Although basic statistical quantities such as the mean,
variance, skewness. kurtosis, and moments are of importance in pattern
recognition, signal processing, neural networks and related fields, they
do not seem to have been computed stochastically, as weights in a
gradient descent process. The closest to these computations is that for
the mean in SOMs. The derived rules allow these statistical quantities to
be stochastically computed, and thus be read, interpreted and used in real
time and in time-varying environments. The experiments have shown the
efficacy of the rules.
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