
CS320 High Level Computer Languages

© R J Botting, Comp Sci, CSUSB 1 April 5, 2011

Numbers are expressed using the familiar decimal notation. A string of decimal digits represents a number. The
value of the number is calculated in the normal way.

1
512
8192

number ::= decimalDigit | decimalDigit number.
decimalDigit ::= "0".."9".

The meaning of a decimalDigit is called it's value and is a number:
value value value(" ") , (" ") ,... (" ") .0 0 1 1 9 9= = =

The meaning of a string of n digits d = (dn dn-1 ... d3 d2 d1) is called it's value and

value d value di
i

i

n

() ()= −

=
∑10 1

1

For example, value(8192) = 8*103 + 1*102 + 9*10 + 2.

CS320 Lecture/Discussion 03 -- Handouts
Your Project
In your project you will be developing a LRM (Language Reference Manual) for a programming language that you will
be inventing. What makes a good LRM? Four things: Good comments, good examples, good syntax, and good
semantics. Further they need to be intermingled: you should be able to see the reason for a feature, and example or two
of the feature, and the rules (syntax and semantics) that apply to that feature close together. We will use the UML to also
provide a visual summary of the semantics of the language.

So for each part of the language that you are defining you should have
1. Some comments
2. Some examples
3. Some syntax definitions using some kind of BNF (see over)
4. Some semantics....mainly English but sometimes a piece of the UML and/or math helps.

Like this:

Note. In the final, in your project, and in class I will often ask you to give me an example of something in a language.
This means a piece of code that is in the language that shows that you know what it means. If I ask for

"an example of a C++ for loop"
then

for(i=1; i<=n; i++)
v+=d[i-1];

is good but
for(....)...

is bad.

Syntax Notation in Projects.
Use XBNF as defined over the page OR you must define the notation you choose to use.

CS320 High Level Computer Languages

© R J Botting, Comp Sci, CSUSB 2 April 5, 2011

Cheat Sheet for the XBNF Metalanguage
This page summarizes a practical version of the Backus Naur Form (BNF) in the book. You will need it for the project,
the final, and in class. It is called XBNF. This stands for eXtreme BNF because it is an eXtremely eXtended BNF.
You can use it for more than syntax. I use it whenever I need to define anything.

. Example
BNF <number>::=<digit>|<number> <digit>
EBNF number::= digit {digit}.
XBNF number::= N(digit).

More examples are on the WWW:
http://www.csci.csusb.edu/dick/samples/algol60.syntax.html
http://www.csci.csusb.edu/dick/samples/
http://www.csci.csusb.edu/dick/cs320/index.html#BNF

. Meta Symbols
The "::=" means "is defined to be". "|" separates alternatives. Defined terms (= BNF non-terminal symbols) have no
<_>. Terminal symbols are written as C/C++/Java strings using double quotation marks. Parentheses "()" are used as
they are in algebra. XBNF uses "#(_)" for `any number of, including zero`, "O(_)" for optional items, and "N(_)" for
"one or more of". Three dots("...") indicate that something is defined somewhere else.
. Predefined XBNF Lexemes
You can use any of the following terms in defining syntax:
char::=`any ASCII character`. digit::= "0".."9". capital_letter::="A".."Z". letter::=capital_letter | "a".."z".
underscore="_". sign::= "+" | "-". comma::=",", semicolon::=";", left_bracket::="[", right_bracket::="]".
quotes::="\'". space::=" ". non_quote::=char ~ quotes. l_paren::="(", r_paren::=")",...

. Generalized Definitions
XBNF lets you define terms using any kind of mathematical expression. This lets it be used for semantics, glossaries,
and dictionaries as well as syntax.

term ::=expression.
term ::=`informal description`.
For parameters , term ::=expression.

 term ::type =expression.
term ::type, properties_of_term.
For parameters , term ::type =expression.

. Predefined XBNF Operations
The expressions in XBNF definitions are constructed using mathematical operators and functions.
Algebra + - * / ^ =(`equal to`) < > <= >= <>(`not equal to`) ...
Logic/Boolean and or not iff if...then..., for all...(...), for some(....).
Set Theory A | B::=union, A B::=concatenation, #A ::=`zero or more A's concatenated`,

A & B::=intersection, A ~ B::= A but not B, complement, @A::=`Power Set`,
A><B ::=`Cartesian product (set of pairs)`, %A ::= `Set of parenthesized Lists`,
A->B::=`The set of functions or mappings that given an A return a B`.
{ x : A || P(x) }::=`The set of all x in A that make P(x) true`.
For elements i, j, i..j ::= {k || i<=k<=j }, the set of k such that i <= k <= j,
 (i..)::={k || k>=i}, (..j)::={k || k<=j}.

. Predefined sets
Boolean::={true, false}, Bit::={0,1}, Byte::=0..255, Natural::={1,2,3,...},
Unsigned::={0,1,2,3,...}, Integer::={..., -2,-1,0,1,2,...}
Rational::=`Ratios of an Integer and a Natural`, Real::=`See mathematical texts`,
Float(s) ::=`Rational with a power of two as a denominator and s significant bits`.

CS320 High Level Computer Languages

© R J Botting, Comp Sci, CSUSB 3 April 5, 2011

HTML::= "HyperText Markup Language".
This is a cheat sheet describing a subset of HTML suitable for completing CS320. For full details see
http://www.csci.csusb.edu/dick/cs320/index.html#HTML.

HTML is a simple markup language. It lets you add tags like this: "<" word ">" to ASCII text to indicate how the text
is to be interpreted. A typical tag is "<P>" that indicates a break between two paragraph. HTML is like RTF, XML, and
other languages derived from SGML (Standardized General Mark up Language). The tags are often put paired around
a piece of text:

<tag ... > text </tag >
An HTML file is interpreted by a browser. Simple HTML defines the desired structure and relative importance of the
pieces of text. The person reading the page can use the browser to select a "look and feel" of the marked-up page. Later
versions of HTML give the writer more control over what the reader sees. However, the user may be using a palm-top
with a black-and-white non-graphic display. So stick to the simplest HTML, if you want everybody to see your work.

HTML uses "<", ">", quotes("), and ampersand(&) as special meta-characters. To represent these special characters
in a page replace them by SGML elements: < > " &. There is a simple program ~dick/bin/ascii2html
that will do this for you:

 ~dick/bin/ascii2html <file.txt >file.html
. Syntax
html_document::="<HTML>" head body, HTML documents have a head and a body.
For example

<HTML><head><title>Example of a simple HTML document</title></head>
<body> <h1>Hello, World!</h1>
</body>

The layout of the document does not usually matter -- this is indicated by tags, some of which are defined below.

head::="<head>" #(title | ...) "</head>". The head can include a title, styles, scripts, and meta-information.

title::="<title>"ASCII_text "</title>". The title is put in top of the window by browsers and used by search engines.

body::="<body>" #piece "</body>". The body is the part that is rendered and shown to the user.

The body of an HTML document is made of pieces an each piece has its own formatting. Typical
pieces include headings, paragraph and line breaks, preformatted text, lists, tables, and so on.
piece::= preformatted | break | elementary_piece | formatted_text | list | table | form|

elementary_piece::=text | image | anchor | applet |

preformatted::="<pre>" #elementary_piece "</pre>". Use end of lines and tabs, not
, <p>,... in pre-formatted text.

break::= "
" | "<p>" | "<hr>" |heading | -- br=`line break`, p=`paragraph break`, hr=`horizontal rule`.

headings::=heading(1) | heading(2) | ...| heading(6). -- heading(1) is boldest and heading(6) least obtrusive.
<h1>Main Headline</h1>
<h6>Unimportant heading</h6>

For n: "1".."6", heading(n)::= "<h" n ">" text "</h" n ">" .

For f: format, formatted_text(f)::="<" f ">" #piece "</"f">".
format::= "blockquote"|"address" | "cite" | "em" | "strong" | em =`emphasized`.
<address>5500, University Parkway, San Bernardino, CA 92407</address>

. Lists

CS320 High Level Computer Languages

© R J Botting, Comp Sci, CSUSB 4 April 5, 2011

list::="<dir>" #item "</dir>" | "" #item ""| "" #item "" |
dir=`directory`, ol=`ordered list`, ul=`unordered list`.

Item 1
Item 2

item::= "" #piece. -- Note. Items in a list can contain other lists.

 Item 1

Item 1a
Item 1b

Item 2

. Graphics
image::="".
 "img" indicates a graphic image to be inserted -- usually a "GIF" or "JPG" stored in the src file.

. Hyperlinks
A piece of an HTML document can link or refer to another document, or a place in that document by using an anchor.
anchor::="" #piece "" | "" #piece "" .

href=`hypertext reference`.

. Uniform Resource Locators(URLs)
URL::= protocol ":" O(location) O(label)| Some protocols don't allow labels. There is also a syntax for queries.

http://www.csci.csusb.edu/dick/cs320/index.html#HTML.

location ::= relative_filename | absolute_name. It is wise to always give a complete absolute name.
absolute_name::= O("//" computer_name) #("/" directory) O("/" O(filename)).
label::= "#" identifier.

protocol::= "http" | "ftp" | "telnet" | "mailto" | ...
http::="HypertText Transfer Protocol", ftp::="File Transfer Protocol".

. Applets
applet::="<applet" "code=" class_name ">" #parameter O(text) "</applet>", a little program executed by the browser.
parameter:= "<param" name "=" value">", data supplied to the applet.

